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Abstract

Background: Penguins (Sphenisciformes) are a remarkable order of flightless wing-propelled diving seabirds distributed
widely across the southern hemisphere. They share a volant common ancestor with Procellariiformes close to the
Cretaceous-Paleogene boundary (66 million years ago) and subsequently lost the ability to fly but enhanced their diving
capabilities. With ∼20 species among 6 genera, penguins range from the tropical Galápagos Islands to the oceanic
temperate forests of New Zealand, the rocky coastlines of the sub-Antarctic islands, and the sea ice around Antarctica. To
inhabit such diverse and extreme environments, penguins evolved many physiological and morphological adaptations.
However, they are also highly sensitive to climate change. Therefore, penguins provide an exciting target system for
understanding the evolutionary processes of speciation, adaptation, and demography. Genomic data are an emerging
resource for addressing questions about such processes. Results: Here we present a novel dataset of 19 high-coverage
genomes that, together with 2 previously published genomes, encompass all extant penguin species. We also present a
well-supported phylogeny to clarify the relationships among penguins. In contrast to recent studies, our results
demonstrate that the genus Aptenodytes is basal and sister to all other extant penguin genera, providing intriguing new
insights into the adaptation of penguins to Antarctica. As such, our dataset provides a novel resource for understanding the
evolutionary history of penguins as a clade, as well as the fine-scale relationships of individual penguin lineages. Against
this background, we introduce a major consortium of international scientists dedicated to studying these genomes.
Moreover, we highlight emerging issues regarding ensuring legal and respectful indigenous consultation, particularly for
genomic data originating from New Zealand Taonga species. Conclusions: We believe that our dataset and project will be
important for understanding evolution, increasing cultural heritage and guiding the conservation of this iconic southern
hemisphere species assemblage.

Keywords: genomics; Sphenisciformes; comparative evolution; phylogenetics; speciation; biogeography; demography;
climate change; Antarctica; evolution
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Data Description
Context

Penguins (Sphenisciformes) are a unique order of seabirds dis-
tributed widely across the southern hemisphere (Fig. 1). Ap-
proximately 20 extant penguin species are recognized across 6
well-defined genera (Aptenodytes, Pygoscelis, Eudyptula, Sphenis-
cus, Eudyptes, and Megadyptes [1–3]). Debate has surrounded
species/lineage boundaries in a few key areas:

1. Divisions between New Zealand little blue (Eudyptula mi-
nor minor), New Zealand white-flippered (Eudyptula minor al-
bosignata), and Australian fairy penguins (Eudyptula novae-
hollandiae) [4–6].

2. Divisions between northern rockhopper (Eudyptes moseleyi),
western rockhopper (Eudytes chrysocome), and eastern rock-
hopper penguins (Eudyptes filholi) [3, 7, 8].

3. Divisions between Fiordland crested (Eudyptes
pachyrhynchus) and Snares crested penguins (Eudyptes
robustus) [9, 10].

4. Divisions between macaroni (Eudyptes chrysolophus chrysolo-
phus) and royal penguins (Eudyptes chrysolophus schlegeli)
[3, 8, 11].

Penguins have an extensive fossil record, with >50 extinct
species documented to date [3, 12, 13], extending back >60 mil-
lion years [12]. Extant penguins span a modest range of sizes [14,
15], with the emperor penguin (Aptenodytes forsteri) the largest
(30 kg) and Eudyptula penguins the smallest (1 kg). In contrast,
the fossil record reveals that many extinct penguin species were
giants (surpassing 100 kg in body mass [13]).

The radiation of penguins provides an excellent case study
for researching biogeographic impacts on speciation processes.
Penguins inhabit every major coastline in the southern hemi-
sphere, and almost every island archipelago in the Southern
Ocean [16]. Their range extends to unique ecological niches,
from the tropical Galápagos Islands (Galápagos penguin, Sphenis-
cus mendiculus) to the oceanic temperate forests of New Zealand
(Eudyptes pachyrhynchus), rocky coastlines of the sub-Antarctic
islands (E. filholi), and the sea ice around Antarctica (Apten-
odytes forsteri) [17]. For this reason, penguins have evolved many
unique adaptations, specific to the variety of ecological envi-
ronments. Previous studies have suggested that global climate
change during the Eocene [18, 19], substantial oceanographic
currents [7], and geological island uplift [3] were key drivers
of penguin diversification. Although the phylogenetic relation-
ships within penguins are relatively well understood [1, 3, 18,
20], it remains uncertain which lineage first diverged from other
penguins. Molecular analyses have differed on whether Apten-
odytes, Pygoscelis, or both together represent the sister taxa to
all other extant penguins [3]. Both of these genera are endemic
to coastal Antarctica and Antarctic and subantarctic islands,
and thus a sequential branching pattern would suggest a po-
lar ancestral area for extant penguins. In contrast, morphologi-
cal data and the fossil record suggest that the more temperate-
adapted genus Spheniscus was the first to diverge [3, 20]. Un-
derstanding the evolutionary diversification of penguins in re-
spect to geological and climatic changes remains a substantial
gap in understanding the biogeographic history of these iconic
birds.

Although penguins are tied to landmasses for breeding and
nesting [21], all species spend most of their lives at sea [22]
and are therefore important components of terrestrial, coastal,
and marine ecosystems [23]. While some taxa inhabit environ-
ments with strong winds and extreme cold temperatures, expe-

riencing seasonal fluctuations in the length of daylight across
the breeding and chick-rearing seasons [24], others inhabit rela-
tively temperate or even tropical climates, with little variation in
day length. The unique morphological and physiological adap-
tations that have evolved within penguins include the complete
loss of aerial flight, where penguins instead use their flipper-like
wings in wing-propelled diving [25], densely packed waterproof
and insulating feathers [26, 27], visual sensitivity of the eye lens
for underwater predation [28–30], dense bones, stiff wing joints
and reduced distal wing musculature to overcome buoyancy in
water [31–33], enhanced thermoregulation for extreme low tem-
peratures, long-term fasting, ability to digest secreted food, de-
layed digestion [34–40], different plumage [41] and crest orna-
ments [42], and catastrophic moult [43]. As such, penguins are
an excellent system to study comparative evolution of adaptive
traits.

Penguins are also sentinels of the Southern Ocean [16], be-
ing particularly sensitive to human and environmental change
[44, 45]. Extensive demographic monitoring programs have in-
dicated that many penguin species are declining in response to
global warming [44–46], pollution, environmental degradation,
and competition with fisheries, which are considered key drivers
of these population declines [47–50]. Demographic coalescent
models have demonstrated dramatic population declines dur-
ing the Pleistocene ice ages, followed by rapid population ex-
pansions in response to global warming [51–54]. Future global
warming is predicted to cause significant population declines
[44, 55–57]. Understanding past demographic histories and in-
ferring future demographic trajectories therefore remain impor-
tant steps for predicting ecosystem-wide changes in this rapidly
warming part of the planet.

Although penguins are a relatively well-studied group, pre-
vious evolutionary studies have been limited by the genetic
markers used, such as short mitochondrial [2, 10, 58–60] or nu-
clear sequences [1, 8, 61, 62], microsatellites [63, 64], partial
mitochondrial genomes [3, 65], or single-nucleotide polymor-
phisms [11, 53, 54, 66–68]. Several studies have hinted at as-
sociations between biological patterns and climate change [51–
54, 60, 69]. Only a few studies have explored genome-wide evo-
lutionary processes among penguins [51, 70] or between pen-
guins and other birds [71–73], and these studies have focussed
on just 2 Antarctic taxa: the Adélie penguin (Pygoscelis adeliae)
and Aptenodytes forsteri. These previous studies have created a
basic framework to understand the timing of penguin diver-
sification, identify population fluctuations during past climate
cycles, and have hinted at the molecular basis for a range of
physiological and morphological adaptations [51]. The molecu-
lar genomic basis for the unique morphological and physiologi-
cal adaptations of penguins, compared to other aquatic and ter-
restrial birds, remains largely unknown. No previous study has
attempted to explore the evolution of all penguins under a com-
parative genomic or evolutionary framework. In this Data Note,
we present 19 new high-quality genomes that, together with
the 2 previously reported genomes [51], encompass all extant
penguin species. We demonstrate the quality and application
of this new dataset by constructing a well-supported phyloge-
nomic tree of penguins. These data provide a critical resource for
understanding the drivers of penguin evolution, the molecular
basis of morphological and physiological adaptations, and de-
mographic characteristics. For species naming, we follow stan-
dard nomenclature; however, for Eudyptula we follow Grosser
et al. [5, 74] and for Eudyptes and Megadyptes we follow Cole
et al. [3].
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Figure 1: Locations of breeding colonies of penguins and sampling sites for the final genomes, adapted from Ksepka et al. [1]. Sampling locations are shown with a
small white ellipse. Note that the sampling location of the humboldt penguin (Spheniscus humboldti) is unclear because this individual was bred in the Copenhagen zoo,
with ancestors imported from Peru and Chile in 1972. AMS: Amsterdam Island; ANT: Antipodes Islands; AUC: Auckland Islands; BOU: Bouvet; CAM: Campbell Island;

CHA: Chatham Islands; CRZ: Crozet; FAL: Falkland Islands/Malvinas; GAL: Galapagos Islands; GOU: Gough Island; HEA: Heard Island; KER: Kerguelen; MAC: Macquarie
Island; NZ: New Zealand; PEI: Prince Edward/Marion Island; SG: South Georgia; SNA: The Snares; SO: South Orkney Islands; SS: South Sandwich Islands.

Methods

Sample collection, library construction, and sequencing
While it is possible to recover genome sequences from histori-
cal museum samples [75], such genomes are often of low qual-
ity and/or fragmented [76], limiting the ability of downstream
analyses. Our project design (see below) relies on high-coverage
genomes with little missing data (see Li et al. [51]). Therefore,
we designed our sample collection to include only high-quality
blood samples. We collected 94 blood samples spanning 19 dif-
ferent penguin species (1–28 samples per species; Supplemen-
tary Table 1). Samples were derived from the wild, zoological
parks, or wildlife hospitals and were obtained according to strict
permitting procedures, animal ethics, and consultation with in-
digenous representatives (Supplementary Table 1).

DNA was extracted from each sample at 1 of 3 laboratories
as follows: we used the HiPire Blood DNA Midi Kit II at BGI (Hong
Kong), the Qiagen DNeasy Blood and Tissue Kit (Qiagen, Valen-
cia, CA, USA) at the University of Oxford (United Kingdom), and
the KingFisher Cell and Tissue Kit in combination with the King-
Fisher Duo Prime Purification System at the University of Copen-
hagen (Denmark). All downstream methods were conducted at
BGI. We diluted each DNA extraction to 20 μL using Tris-EDTA
buffer. The quality and quantity of each DNA extraction was as-
sessed by first estimating the concentration of 1 μL DNA extrac-
tion on a Microplate Reader, and DNA fragment size was evalu-
ated by pulse gel electrophoresis or 1% agarose gel electrophore-

sis. Following quality control, a single sample per species was
chosen for genomic library construction (Table 1).

We constructed 1 or more genomic libraries for each of the
19 penguin species depending on the DNA quality. For species
that we could obtain high molecular weight DNA with the main
band longer than 40 kb, we constructed 10X Genomics genomic
libraries to produce 100× coverage sequencing data (Table 2). To
do this, we attached a specific unique barcode to 1 end of short
DNA fragments that are broken from 1 long DNA fragment, us-
ing standard protocols provided by ChromiumTM Genome So-
lution. Because this protocol encompasses >1 million specific
barcodes in a single solution, it decreases the chance of short
DNA fragments with the same barcode being derived from un-
related long DNA fragments. For those species with shorter DNA
fragments (<40 kb), we constructed genomic libraries follow-
ing Illumina (San Diego, CA, [77]) or BGIseq 500 [78] protocols.
Those protocols resulted in several paired-end libraries with in-
sert sizes of either 250 or 500 bp, in addition to several mate-pair
libraries with insert sizes ranging from 2 to 10 kb (Table 2). We
further generated 100–320× coverage sequencing data for these
species. Furthermore, we did not find any significant difference
in the assembly quality between Illumina and BGIseq, while the
10x strategy normally produced better assembly than the other
strategy with multiple insert-sized libraries (Table 3). Following
sequencing, we generated 3.24 Tb sequencing reads encompass-
ing all 19 penguin species, obtaining >111 Gb data per species
(Table 2).
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6 High-coverage genomes to elucidate the evolution of penguins

Table 2: Details of the sequencing platform used and the data statistics for 21 penguin genomes

Species Library construction strategy Sequencing platform Raw data (Gb) Clean data (Gb)

Eudyptes chrysolophus chrysolophus 10X BGIseq500 145.9 126.9
Megadyptes antipodes antipodes 10X BGIseq500 111.9 104.1
Spheniscus demersus 10X BGIseq500 141.1 131.3
Spheniscus mendiculus 10X BGIseq500 112.2 104.4
Eudyptula minor albosignata 10X BGIseq500 132.5 124.8
Eudyptula minor minor 10X BGIseq500 121.4 112.7
Eudyptula novaehollandiae 10X BGIseq500 180.4 168.5
Pygoscelis papua 10X BGIseq500 134.5 124.0
Pygoscelis antarctica 10X BGIseq500 154.5 139.7
Aptenodytes patagonicus 10X BGIseq500 147.6 134.0
Eudyptes chrysolophus schlegeli 250 bp, 2 kb, 5 kb, 10 kb BGIseq500 402.6 296.6
Eudyptes pachyrhynchus 250 bp, 2 kb, 5 kb, 10 kb HiSeq X ten and HiSeq 4000 146.4 104.7
Eudyptes robustus 250 bp, 2 kb HiSeq X ten and HiSeq 4000 171.2 107.6
Eudyptes sclateri 250 bp, 2 kb, 5 kb HiSeq X ten and HiSeq 4000 156.2 103.2
Eudyptes filholi 250 bp, 2 kb, 5 kb, 10 kb HiSeq X ten and HiSeq 4000 195.0 146.8
Eudyptes chrysocome 250 bp, 2 kb, 5 kb HiSeq X ten and HiSeq 4000 195.1 111.6
Eudyptes moseleyi 250 bp, 2 kb, 5 kb, 10 kb HiSeq X ten and HiSeq 4000 173.6 133.1
Spheniscus magellanicus 250 bp, 2 kb, 5 kb, 10 kb HiSeq X ten and HiSeq 4000 212.6 150.7
Spheniscus humboldti 250 bp, 2 kb, 5 kb, 10 kb HiSeq X ten and HiSeq 4000 208.8 137.2

HiSeq X ten was used for sequencing small insert size libraries; HiSeq 4000 was used for sequencing mate-pair libraries.

Table 3: Assembly statistics and BUSCO results for 21 penguin genomes within a total of 4,915 conserved avian orthologs

Library
construction
strategy Species

Contig
N50 (bp)

Scaffold
N50 (bp)

Genome
size (bp) Complete Duplication Fragmented Missing

10x Eudyptes chrysolophus
chrysolophus

163,848 13,794,837 1,368,663,695 85.40% 7.70% 4.40% 2.50%

Megadyptes antipodes
antipodes

83,954 23,315,117 1,317,732,923 91.80% 1.20% 4.20% 2.80%

Spheniscus demersus 101,408 15,386,364 1,278,371,924 91.30% 0.90% 4.70% 3.10%
Spheniscus mendiculus 72,552 380,950 1,300,348,609 88.90% 1.60% 5.70% 3.80%
Eudyptula minor
albosignata

95,773 21,866,543 1,374,338,381 85.60% 7.40% 4.20% 2.80%

Eudyptula minor minor 88,190 21,127,646 1,466,686,831 84.00% 8.60% 4.60% 2.80%
Eudyptula novaehollandiae 122,461 29,280,209 1,357,427,560 89.00% 4.70% 3.80% 2.50%
Pygoscelis papua 93,785 2,780,837 1,309,329,553 90.70% 1.50% 5.00% 2.80%
Pygoscelis antarctica 118,336 6,180,260 1,265,661,676 91.30% 1.20% 4.60% 2.90%
Aptenodytes patagonicus 116,769 2,903,810 1,256,739,118 91.50% 1.10% 4.20% 3.20%

Multi-libraries Eudyptes chrysolophus
schlegeli

24,191 1,877,548 1,310,605,488 93.20% 1.50% 3.30% 2.00%

Eudyptes pachyrhynchus 33,319 8,795,033 1,310,923,788 80.20% 7.70% 4.30% 7.80%
Eudyptes robustus 29,712 363,310 1,248,618,553 87.30% 1.10% 5.10% 6.50%
Eudyptes sclateri 69,562 1,921,244 1,211,737,899 93.60% 1.10% 3.20% 2.10%
Eudyptes filholi 74,280 6,429,221 1,223,976,468 93.20% 1.00% 3.60% 2.20%
Eudyptes chrysocome 66,005 1,949,323 1,231,067,970 93.80% 1.00% 3.00% 2.20%
Eudyptes moseleyi 21,362 2,248,088 1,306,699,575 93.60% 1.20% 3.00% 2.20%
Spheniscus magellanicus 41,455 12,679,469 1,262,636,738 93.10% 1.30% 3.50% 2.10%
Spheniscus humboldti 19,849 6,229,819 1,243,403,142 93.30% 1.10% 3.50% 2.10%
Pygoscelis adeliae 22,195 5,118,896 1,216,600,033 92.80% 0.60% 4.00% 2.60%
Aptenodytes forsteri 31,730 5,071,598 1,254,347,440 93.20% 0.80% 3.60% 2.40%

Genome assembly and quality evaluation
Sequences obtained from the 250-bp insert size libraries and the
10x libraries were used to evaluate the genome size for each
penguin using a k-mer approach [79]. Reads were scanned us-
ing a 17-bp window with 1 bp sliding and the frequency of each
17 k-mer was recorded. After all the reads were scanned, the k-
mer frequency distributions were plotted and the depth with the
highest frequency (K dep) was defined. The genome size was es-

timated as the read number ∗ (read length – 17 + 1)/K dep. The
filtered reads for the 10x libraries were only used for estimat-
ing the genome size with 17 k-mer, while all reads were used for
Supernova assembly.

Sequencing errors have a major effect on subsequent
genome assembly because they both introduce mistakes in
the assembly and also decrease the assembly continuities.
Several features can be linked to sequencing noise, including
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Figure 2: Genome assembly statistics of all penguin species. A, Dot plot of the quality of each index showing contig N50 (maximum is Eudyptes chrysolophus chrysolophus

with 163,848 bp; minimum is Spheniscus humboldti with 19,849 bp) and scaffold N50 (maximum is Eudyptula novaehollandiae with 29,280,209 bp; minimum is Eudyptes

robustus with 363,310 bp). Each symbol indicates a penguin species, the x-axis indicates the scaffold N50, and the y-axis indicates the contig N50 for each species. B,
Genome size for each penguin species (maximum is Eudyptula minor with 1,466,686,831 bp; minimum is Eudyptes sclateri with 1,211,737,899 bp). C, BUSCO assessments
of all penguin genomes, showing the percentage of complete, duplicated, fragmented, or missing data. See Table 3 for more details. The symbols for each penguin
species correspond to the symbols used in Fig. 1. and Fig. 3.

low-quality bases, adaptor contamination, and duplication [80].
To remove the potential biases introduced by sequencing noise,
we filtered our raw sequencing reads prior to genome assem-
bly, following strict standards including (i) discarding paired-end
reads containing overlaps, (ii) removing reads with >20% low-
quality bases as the quality score was <10, (iii) removing reads
with >5% ambiguous N bases, (iv) removing paired-end reads
containing identical sequences likely to be PCR duplicates, and
(v) removing reads with adaptor sequences. Following filtering,
each genome contained >104 Gb data. Overall, we obtained a
total of 2.56 Tb high-quality data for all 19 penguin genomes
(Table 2).

Both SOAPdenovo v. 2–2.04 (SOAPdenovo2, RRID:SCR 014986)
[81] and Allpaths-LG (ALLPATHS-LG, RRID:SCR 010742) [82] were
used to assemble the genomic libraries from the various insert
sizes. For SOAPdenovo, paired-end reads from small insert size
libraries were used to construct de Bruijn graphs, with various
k-mer ranging from 23 to 47. Contigs were subsequently con-
structed using contig modular with the “-D 1 -g” parameter to
remove edges containing coverages no larger than 1. Following
this, “map -k 35 -g” was used to map mate-pair reads into con-
tigs, with k-mer size 35. Finally, we conducted scaffolding with
parameters “scaff -g -F” to assemble the contigs into longer link-
ages. The best version, in terms of various k-mer in the graph
construction step, was chosen as the SOAPdenovo representa-
tive for each species. In addition, we also assembled genomic
libraries from various insert sizes using Allpaths-LG following
the default parameters. By comparing the assemblies from both
SOAPdenovo and Allpaths-LG, according to both the scaffold N50
and the total length, we chose the best assembler as a represen-
tative for each of the 19 penguin species. Supernova v. 2.0 [83],
recommended for 10x genomic data [83], was used to assemble
those species with 10x genomic libraries, following the default
parameters. The optimal assembly strategy chosen for each pen-
guin species is listed in Supplementary Table 2. For each assem-

bly, we used GapCloser v. 1.12 (GapCloser, RRID:SCR 015026) [81]
to locally assemble and close gaps within each scaffold following
the default parameters.

All penguins (including those obtained in Li et al. [51]) were
estimated to have a ∼1.3-Gb genome (Fig. 2), containing little
variances. Most assemblies have both a longer scaffold N50 and
contig N50 than the Aptenodytes forsteri and Pygoscelis adeliae as-
semblies obtained by Li et al. [51] (Fig. 2). In total, the 21 genomes
contained a scaffold N50 >1 Mb, and of those, 13 genomes con-
tained a scaffold N50 >3 Mb. All penguin genomes contain a con-
tig N50 >19 kb and 15 of the genomes are >30 kb. The maximum
contig N50 extends to 163 kb for the macaroni penguin (Eudyptes
chrysolophus chrysolophus ) (Fig. 2). The highest-quality genome is
Eudyptula novaehollandiae , encompassing a 29.3-Mb scaffold N50.
Therefore, our results demonstrate consistency and high quality
among all 21 penguin genomes (Fig. 2).

The genome assembly completeness provides an evalua-
tion of the assembly quality. We used BUSCO v. 3.0.2 (BUSCO,
RRID:SCR 015008) [84] to evaluate our newly assembled pen-
guin genomes with the avian database aves odb9, which encom-
passes 4,915 conserved avian orthologs (Table 3). Only ∼3% of
the core genes in aves odb9 could not be annotated on the 21
penguin genomes (ranging between 2% and 7.8%). This demon-
strates that all 21 penguin genomes are near-complete, contain-
ing only a few gaps. We identified an average of 90% complete
core genes on each of the 21 penguin genomes, with the rich-
est being 93.8% on Eudyptes chrysocome. Furthermore, when sev-
eral genes were annotated in >1 copy, we considered them to be
duplications. Duplication rates among the 21 penguin genomes
varied only between 0.6% and 8.6%. In addition, only ∼4% of
the core genes were partly annotated on each of the 21 pen-
guin genomes (Fig. 2). Overall, we obtained almost-complete,
high-quality genomes. Our genomic dataset (including those ob-
tained in Li et al. [51]) encompasses all extant penguin species,
representing a comprehensive dataset.
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Repeat annotation
We used RepeatMasker v. 4.0.7 (RepeatMasker, RRID:SCR 012954)
[85, 86], TRF v. 4.09 [87], and RepeatModeler v. 1.0.8 (RepeatMod-
eler, RRID:SCR 015027) [88, 86] to identify repetitive sequences in
each of the penguin genomes. We compared our genomes to 5
avian outgroups: wedge-rumped storm petrel (Hydrobates tethys),
Wilson’s storm petrel (Oceanites oceanicus), Atlantic yellow-nosed
albatross (Thalassarche chlororhynchos), zebra finch (Taeniopygia
guttata), and chicken (Gallus gallus). Genome sequences were
aligned to RepBase23.04 [89] through RepeatMasker, and each hit
was further classified into detailed categories. Tandem repeats,
which are a series of DNA sequences containing >2 adjacent
copies, were identified with TRF using the default parameters.
In addition, we used RepeatModeler in a de novo repeat family
identifying approach. All identified repeat elements were clas-
sified into 7 categories (DNA, long interspersed nuclear element
[LINE], short interspersed nuclear element [SINE], long terminal
repeat [LTR], other, unknown, tandem repeat) according to clas-
sification in repeat databases. Repeat annotations using the 3
methods were combined into a non-redundant repeat annota-
tion for each penguin genome and the 5 outgroups.

Approximately 10% of the genome sequences were identi-
fied as repeat elements on each penguin genome, which is sim-
ilar to the 5 outgroups (Table 2). Although all penguin genomes
had similar repeat content, they varied in content for each cat-
egory. In all penguins and outgroups, the most abundant repeat
category was LINE. E. moseleyi has the richest tandem repeats
of 3.52%, which is substantially greater than Aptenodytes forsteri,
which has a richest tandem repeats of 2.24% and contains the
second richest tandem repeats repeat in all penguins. Eudyptula
minor minor had the most genome sequences identified as LTR
(4.26%). See Table 4 for specific details on repeat annotations for
each species.

Protein-coding gene annotation
We used the annotation methods developed by The Bird 10,000
Genomes (B10K) consortium [90] to annotate the 21 penguin
genomes. Prior to annotating the protein-coding genes, a non-
redundant avian reference gene set, consisting of protein se-
quences from Taeniopygia guttata and Gallus gallus, was gener-
ated [71]. Whole-genome protein sequences of Ensembl gene
sets (release-85) of Taeniopygia guttata and Gallus gallus were
then used to identify 12,337 orthologs based on whole-genome
synteny relationships that were downloaded from the UCSC
Genome Browser [91]. For both Taeniopygia guttata and Gallus
gallus, we compared the 2 proteins in each ortholog and chose
the longer homologous sequence with the human ortholog pro-
tein sequence in the reference gene set. Within 12,337 orthologs,
6,888 from Taeniopygia guttata and 5,449 from Gallus gallus were
selected as the reference gene set. Following this, specific genes
of Taeniopygia guttata or Gallus gallus were added to the ref-
erence gene set. This reference gene set comprised 5,084 Tae-
niopygia guttata genes without Gallus gallus orthologs and 3,158
G. gallus genes that had not been identified as ortholog genes
to Taeniopygia guttata. Finally, protein sequences were filtered
if they contained <50 amino acids, consisted of function as
transposons/retrotransposons, or contained only a single non-
functional exon. The final avian reference gene set therefore
contained 20,181 protein-coding genes.

To annotate the protein-coding genes from the penguin
genomes, protein sequences from the avian reference gene set
were then mapped to each of the 21 penguin genomes. First,
protein sequences were aligned to each penguin genome using
TBLASTN v. 2.2.2 (TBLASTN, RRID:SCR 011822) [92] with a 1e−5

e-value cut-off. Multiple adjacent hits from the same protein
were then linked together using genBlastA v. 1.0.4 [93] to obtain
the candidate gene boundary. A candidate hit was removed if a
protein had <30% amino acids aligned to the penguin genome.
For each candidate hit for each protein, we extracted genomic
sequences covering this hit with 2 kb upstream and downstream
of the extension. Extracted genome sequences and correspond-
ing homologous protein sequences were then prepared as input
for GeneWise v. 2.4.1 (GeneWise, RRID:SCR 015054) [94] to the
annotated protein-coding gene models, which included exon
and intron boundaries. Coding sequences for each annotated
gene model were extracted from each genome according to the
annotated gene model, and then each coding sequence was
translated into the protein sequence. This annotated protein se-
quence was then aligned with the corresponding homolog pro-
tein sequence using MUSCLE v. 3.8.31 (MUSCLE, RRID:SCR 01181
2) [95], while removing annotated proteins with <40% identity
with the corresponding homolog protein sequence. Annotated
proteins with <30 amino acids and annotated proteins contain-
ing >2 frame shifts or 1 premature stop codon were then re-
moved. If a genome locus had been annotated using several gene
models, the gene model with the highest identity with the cor-
responding homolog protein was selected. Therefore, the anno-
tated gene set for our penguin genomes contained no overlap-
ping genes.

Protein sequences from human (hg38) and avian transcripts
were also mapped to each penguin genome and the anno-
tated gene models (as above). For the avian transcripts dataset,
we obtained 71 avian transcriptomic samples from NCBI [96]
(Supplementary Table 3) and assembled those into transcripts
using either Newbler v2.9 [97] for 454 sequencing assemblies
or Trinity v20140717 [98] for Illumina sequencing assemblies.
We used ORFfinder [96] to identify open reading frames (ORFs)
for transcripts, and the protein sequences were then trans-
lated from the ORF. The protein sequences translated from
the transcripts were then mapped to the avian reference gene
set and the human protein sequences, while removing those
with similarity to the avian reference gene set or the hu-
man protein sequences. Transcripts with ORF length <150 bp
were also removed. Protein sequences from 5,257 transcripts
were then used for annotation. Three gene model sets anno-
tated from the avian reference gene set, the human protein se-
quences, and transcriptome were then combined into a final
non-redundant gene set. We prioritized 3 gene model sets in the
following order: avian reference gene set > human protein >

transcriptome.
After applying the above methods, we annotated the 19

newly assembled penguin genomes, as well as the 2 previously
published penguin genomes [51]. We identified ∼16,000 genes on
each penguin genome, which is similar to the genomes of Tae-
niopygia guttata and Gallus gallus. The average gene length and
coding sequence length are ∼19 and 1.3 kb, respectively. Each
gene encompasses ∼8 exons, with an average length of 170 bp.
Intron lengths are an average length of 2.6 kb (Table 5).

Gene function annotation
To assign functions to each gene, we aligned each gene to 3 func-
tional databases: Swiss-Prot release-2019 03 [99], InterPro v. 68.0
(InterPro, RRID:SCR 006695) [100], and KEGG v89.1 (KEGG, RRID:
SCR 012773) [101]. Protein sequences of each gene were aligned
to Swiss-Prot database using BLASTP [92], and the function of the
best hit was selected as the function annotation for this gene.
We then searched InterPro databases that encompass ProDom,
PRINTS, Pfam, SMART, PANTHER, ProSiteProfiles, and ProSitePat-
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10 High-coverage genomes to elucidate the evolution of penguins

Table 5: Protein-coding gene statistics of all 21 penguin genomes and 5 outgroups

Species

Number of
protein-coding

genes
Mean gene
length (bp)

Mean coding
sequence length (bp)

Mean exons
per gene

Mean exon
length (bp)

Mean intron
length (bp)

Eudyptes chrysolophus schlegeli 17,191 18,860 1,351 7.9 171 2,540
Eudyptes chrysolophus
chrysolophus

16,311 20,248 1,392 8.2 170 2,623

Eudyptes pachyrhynchus 19,170 17,394 1,306 7.4 178 2,535
Eudyptes robustus 17,126 16,254 1,295 7.4 174 2,329
Eudyptes sclateri 15,786 19,627 1,402 8.2 171 2,527
Eudyptes filholi 15,963 19,959 1,407 8.2 171 2,562
Eudyptes chrysocome 16,280 19,436 1,382 8.1 171 2,555
Eudyptes moseleyi 16,812 19,767 1,370 8.0 171 2,621
Megadyptes antipodes
antipodes

16,563 18,509 1,334 7.8 171 2,533

Spheniscus magellanicus 16,795 19,311 1,381 8.1 171 2,535
Spheniscus demersus 16,134 19,029 1,344 7.8 171 2,584
Spheniscus mendiculus 16,390 17,097 1,311 7.6 172 2,382
Spheniscus humboldti 16,587 19,642 1,387 8.1 170 2,558
Eudyptula minor albosignata 17,424 18,837 1,338 7.8 172 2,574
Eudyptula minor minor 17,802 19,078 1,349 7.8 172 2,598
Eudyptula novaehollandiae 17,188 19,271 1,355 7.9 172 2,609
Pygoscelis adeliae 14,463 20,595 1,385 8.3 168 2,648
Pygoscelis papua 16,698 18,276 1,333 7.8 172 2,503
Pygoscelis antarctica 15,488 19,520 1,381 8.1 171 2,558
Aptenodytes patagonicus 15,195 19,596 1,384 8.1 170 2,552
Aptenodytes forsteri 15,593 19,844 1,381 8.1 170 2,584
Hydrobates tethys 15,915 17,898 1,344 8.1 165 2,323
Oceanites oceanicus 16,055 17,936 1,356 8.0 170 2,377
Thalassarche chlororhynchos 13,347 10,029 1,110 6.4 175 1,667
Taeniopygia guttata 19,174 14,787 1,196 7.2 167 2,198
Gallus gallus 17,883 16,965 1,414 8.3 171 2,135

terns to obtain the motifs and domains for each gene. Gene
Ontology [102] terms for each gene were obtained from the cor-
responding InterPro entry. To identify the pathways in which the
gene might be involved, protein sequences for each gene were
then aligned against the KEGG database using BLASTP. For each
penguin genome, a total of >99% of the protein-coding genes
were assigned ≥1 function annotation in each penguin, which
is similar to the 5 outgroups (Table 6). Overall, >95% of the pro-
tein genes were assigned a Swiss-Prot function, demonstrating
high-quality gene sets.

Phylogenomic reconstruction
To understand the evolutionary history of all extant penguins,
we created a phylogeny of penguins using the genomic-level or-
thologs with coalescent-based ExaML and concatenation-based
methods MP-EST and ASTRAL [103–105]. We first applied rigor-
ous filtering steps to obtain 7,235 high-quality orthologs. This
was achieved by filtering ∼13,214 orthologs (BLAST reciprocal
best hits [RBHs]) that were present in the Taeniopygia guttata
genome and the 21 penguins/5 avian outgroup genomes (de-
scribed above), retaining orthologs with no missing data, and re-
moving sequences containing internal stop codons. We aligned
and filtered our alignment data using several methods: (i) pro-
tein sequences were aligned using MAFTT v. 7.313 [106] follow-
ing “linsi” parameters for local, iterative progressive alignment;
(ii) we also applied column-based alignment filtering using tri-
mAl v. 1.4.rev22 [107], using the parameter “automated1” to
heuristically choose trimming parameters based on input align-
ment characters; (iii) nucleic acid alignments were also obtained

using trimAl, using the parameter “backtrans” to obtain a back-
translation for a given amino acid alignment. Alignment filter-
ing was applied to (i) the column-based alignments, by remov-
ing all missing data, and retaining alignment lengths >50 bp (re-
sulting in 7,229 orthologs, the “TrimAl data” set); and (ii) apply-
ing a full-matrix occupancy to the no missing dataset (retaining
7,011 orthologs, the “No missing data” set) following the pipeline
published previously [108]. Loci containing no missing taxa were
then retained, by removing alignment columns containing gaps,
undetermined bases (Ns), or ambiguity characters and loci with
a post-filtering alignment length <200 bp.

We constructed gene trees for each locus using RAxML
v8.2.12 (RAxML, RRID:SCR 006086) [109] and then constructed
phylogenomic trees using 2 coalescent-based methods, MP-EST
v. 2.0 and ASTRAL-III, based on the gene trees. First, we used
RAxML v. 8.2.12 to infer the highest-scoring maximum likeli-
hood tree from unpartitioned alignments for each locus using a
GTR+GAMMA substitution model, 20 independent tree searches
beginning from random starting tree topologies, and 500 boot-
strap replicates for each locus. Resulting gene trees were rooted
with Gallus gallus using the “ape” package in R v. 3.5.2 [110]. We
then created a coalescent-based phylogenetic tree using MP-EST
v. 2.0 [104] by estimating trees from a set of rooted gene trees
by maximizing a pseudo-likelihood function. Species tree and
bootstrap topology searches were achieved over 3 independent
replicates, using a different starting seed and with 10 indepen-
dent tree searches per run. The highest-scoring tree in 10 tree
searches was kept as the result for each replicate. Because the
3 final trees from MP-EST replicates shared the same tree topol-
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Table 6: Function annotation results for protein-coding genes for 21 penguins and 5 outgroups

Species
Swissprot KEGG Interpro Overall

Number % Number % Number % Number %

Eudyptes chrysolophus schlegeli 16,739 97.37 15,347 89.27 16,916 98.40 17,064 99.26
Eudyptes chrysolophus chrysolophus 15,863 97.25 14,646 89.79 16,051 98.41 16,191 99.26
Eudyptes pachyrhynchus 18,680 97.44 17,250 89.98 18,873 98.45 19,028 99.26
Eudyptes robustus 16,580 96.81 15,500 90.51 16,816 98.19 16,988 99.19
Eudyptes sclateri 15,383 97.45 14,172 89.78 15,540 98.44 15,664 99.23
Eudyptes filholi 15,555 97.44 14,362 89.97 15,696 98.33 15,840 99.23
Eudyptes chrysocome 15,692 96.39 14,732 90.49 15,977 98.14 16,148 99.19
Eudyptes moseleyi 16,377 97.41 15,153 90.13 16,540 98.38 16,688 99.26
Megadyptes antipodes antipodes 15,755 95.12 14,993 90.52 16,264 98.19 16,445 99.29
Spheniscus magellanicus 16,371 97.48 15,136 90.12 16,532 98.43 16,670 99.26
Spheniscus demersus 15,388 95.38 14,579 90.36 15,839 98.17 16,001 99.18
Spheniscus mendiculus 15,714 95.88 14,801 90.31 16,090 98.17 16,254 99.17
Spheniscus humboldti 16,172 97.50 14,954 90.15 16,319 98.38 16,460 99.23
Eudyptula minor albosignata 16,615 95.36 15,778 90.55 17,098 98.13 17,297 99.27
Eudyptula minor minor 16,994 95.46 16,073 90.29 17,476 98.17 17,663 99.22
Eudyptula novaehollandiae 16,423 95.55 15,561 90.53 16,892 98.28 17,060 99.26
Pygoscelis adeliae 13,964 96.55 13,054 90.26 14,220 98.32 14,348 99.20
Pygoscelis papua 15,931 95.41 15,097 90.41 16,378 98.08 16,553 99.13
Pygoscelis antarctica 15,050 97.17 13,853 89.44 15,224 98.30 15,360 99.17
Aptenodytes patagonicus 14,808 97.45 13,493 88.80 14,954 98.41 15,063 99.13
Aptenodytes forsteri 15,053 96.54 14,112 90.50 15,308 98.17 15,478 99.26
Hydrobates tethys 15,493 97.35 14,273 89.68 15,628 98.20 15,775 99.12
Oceanites oceanicus 15,622 97.30 14,412 89.77 15,775 98.26 15,919 99.15
Thalassarche chlororhynchos 12,958 97.09 11,881 89.02 13,072 97.94 13,219 99.04
Taeniopygia guttata 18,367 95.79 17,115 89.26 18,537 96.68 18,918 98.66
Gallus gallus 16,760 93.72 15,585 87.15 17,079 95.50 17,263 96.53

ogy, we kept the highest-scoring tree as the final tree for further
analysis. Branch lengths were re-estimated in coalescent units
of substitutions per site by constraining alignments to the MP-
EST tree topology using the “-f E” option in ExaML v.3.0.21 [103].
Bootstrap values were plotted using RAxML based on the boot-
strap replicates, and trees were outgroup-rooted with G. gallus.
In addition, we used the coalescent-based method ASTRAL-III
[105] with default parameters to obtain the tree with the max-
imum number of shared induced quartet trees in the set of
unrooted gene trees, constrained by the set of bipartitions in
the tree based on a predefined set of partitions. The inferenced
trees also shared the same tree topology with the MP-EST re-
sults. Then, the concatenation-based phylogenomic inference
was conducted using ExaML v3.0.21. This was achieved using a
GTR+GAMMA substitution model on the partitioned (each locus
as a separate partition), concatenated alignments, and inferring
the topology from 21 full maximum likelihood tree searchers:
20 beginning with random starting trees, and a single search
beginning with the random stepwise addition order parsimony
tree conducted using RAxML. For each dataset, 100 ExaML boot-
strap replicates were conducted and convergence was assessed
according to the bootstrapping analysis and applying a majority-
rule consensus tree criterion in RAxML with option “-I autoMRE”.
We then compared the resulting trees obtained using the “Tri-
mAl data” and the “No missing data” from coalescent-based MP-
EST and ASTRAL with concatenation-based ExaML (Supplemen-
tary Fig. 1).

While the resulting topologies of the outgroups Hydrobates
tethys, Oceanites oceanicus, and Thalassarche chlororhynchos are
slightly different between coalescent-based and concatenation-
based methods, the topologies of our penguin genomes are iden-
tical using both methods (Fig. 3). Our final phylogeny (Fig. 3) en-

compassing all extant penguin genomes is slightly different to
a recent phylogenetic study using mitochondrial genomes [3].
Specifically, while the mitochondrial phylogeny suggested that
Aptenodytes + Pygoscelis are sister to all other penguins, our full
genome phylogeny suggests that Aptenodytes alone is sister to
all other penguins. This result confirms earlier results combin-
ing data from a small set of mitochondrial genes and the nuclear
RAG-1gene [1, 62] and provides intriguing new evidence on the
historical biogeographical and evolutionary patterns of adapta-
tion to Antarctica. We expect this novel genomic dataset to pro-
vide further important insights into the evolution of penguins in
the southern hemisphere.

Re-use Potential
Consortium organization and further research plans

The 19 high-coverage genomes presented here, along with the
Aptenodytes forsteri and Pygoscelis adeliae genomes presented
by members of our consortium in 2014 [51], provide an excit-
ing resource for understanding evolutionary diversification, the
molecular basis for unique functional adaptation, and demo-
graphic histories of penguins. The Penguin Genome Consortium
is an international team of scientists with backgrounds in ma-
rine ornithology, ecology, molecular biology, evolutionary and
comparative genomics, phylogenetics, physiology, palaeontol-
ogy, veterinary science, and bioinformatics. The diverse skills
encompassed within our highly collaborative consortium will be
essential to study these genomes under comparative genomic
and evolutionary frameworks. In doing so, we will expand on
[51] by investigating 3 key areas related to penguin evolution and
adaptation.
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12 High-coverage genomes to elucidate the evolution of penguins

Figure 3: Phylogenomic reconstruction of penguins inferred by the ExaML method with no missing data. The topology of all clades was strongly supported (bootstrap
support: 100). The topology and support were identical using the MP-EST and ASTRAL methods (with no missing data) except for the outgroup (bootstrap support for

the split between Hydrobates tethys and Oceanites oceanicus: 37) and within the penguin genus Spheniscus (bootstrap support for the split between the African penguin
[Spheniscus demersus] and the magellanic penguin [S. magellanicus]: 97).

Evolutionary relationships and taxonomic boundaries
With a deep evolutionary history, and diverse radiation, pen-
guins provide an exciting system to understand the evolution-
ary drivers of diversification [3]. Moreover, robust taxonomic
frameworks can be crucial for directing limited conservation
resources for maximum gains. Significant uncertainty remains
regarding species/lineage boundaries between some closely re-
lated penguin taxa. The genomes generated here therefore pro-
vide an exciting new dataset to examine taxonomic, phyloge-
nomic, and biogeographical patterns for understanding penguin
evolution.

Comparative genomics and adaptation
Penguins provide an excellent system to study comparative
evolutionary adaptation [51]. We will use our genomes to ex-
plore comparative evolution among penguins, and between pen-
guins and other avian orders. By examining loci under pos-
itive selection, we shall reveal the molecular basis for the
unique physiological and morphological adaptations to dif-
ferent environments and ecologies that are exhibited by
penguins.

Penguins in a changing world
Penguins are sensitive indicators of environmental change [44,
45]. It is predicted that future climate change will lead to signif-
icant declines in many penguin populations [47–50]. Conserva-
tion management decisions can be guided by demographic as-
sessments. However, there remains a substantial gap in predict-
ing ecosystem-wide changes to future climate change. As such,
demographic analyses of these genomes will be critical for con-

servation management of penguins and other Southern Ocean
assemblages.

Cultural significance

The context in which wildlife research in New Zealand is under-
taken is evolving rapidly and heading into new legal and novel
cultural contexts [111–114]. Recent initiatives such as the be-
stowing of the rights of an individual on Te Urewera, a former
national park, set an international precedent for this change in
approach [115]. Therefore, it is critical that research permissions
be obtained and appropriate indigenous consultation with Iwi,
Rūnanga, Whānau, and Hapū be conducted. The regulatory arm
of the New Zealand government in this process, the Department
of Conservation, is legally required to give effect to the Principles
of the Treaty of Waitangi [116] in its administration of the legis-
lation pursuant to which Authorities are issues.

At another level the Ngāi Tahu Deed of Settlement Act recog-
nizes all native penguin species as Taonga, or treasured posses-
sions [117]. Consequently, not only is it a legal requirement to
undertake rigorous Māori consultation when studying Taonga
[118, 119], the Department of Conservation has to have par-
ticular regard to the views of Iwi, Rūnanga, Whānau, or Hapū
when considering whether to authorize any application. Re-
cent discussions have also emphasized that Taonga genomes
are sacred (tapu) because they are considered to contain both
the living and the future generations (whakapapa, mauri, and
wairua of tipuna), engendering Māori concerns surrounding
the commercialization, ownership, storage, and modification
of Taonga genomes [120]. We generated Taonga genomes en-
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compassing hoiho (yellow-eyed penguin, Megadyptes antipodes
antipodes), kororā (little penguin, Eudyptula spp.), pokotiwha
(Snares-crested penguin, E. robustus), tawaki (Fiordland-crested
penguin, E. pachyrhynchus), and erect-crested penguin (Eudyptes
sclateri). These genomes were obtained following rigorous De-
partment of Conservation permitting procedures (including col-
lection, holding, and exporting permits) and following Depart-
ment of Conservation Iwi, Rūnanga, Whānau, or Hapū consul-
tation (Supplementary Table 1). Several of the Taonga genomes
studied here were collected alongside broader research projects,
and additional consultation efforts were undertaken for those
projects. We emphasize that there will be no commercialization,
ownership, or modification of any of the genomes presented
here. While these Taonga genomes will be publicly available, it
is critical that new researchers studying these genomes take the
appropriate steps to seek additional Māori permissions and con-
sultation, which will ensure respect of New Zealand cultural val-
ues.

The emerging issues surrounding the generation and use of
Taonga genomes also highlight that Māori consultation should
also be undertaken when obtaining genomes from Taonga
housed in overseas museum collections. We hope that the data
and our research questions presented here, and our future re-
search outputs using these genomes will be valuable for both
cultural heritage and for conservation management of penguin
populations.

Early-release use of the data

The Fort Lauderdale [121] and Toronto [122] agreements state
that in exchange for early release of datasets, the data produc-
ers retain the right to be the first to describe and analyse the
complete datasets in peer-reviewed publications. Comparative
and evolutionary genomic analyses are currently being carried
out, and the consortium welcomes new members interested in
contributing to this work. While this work is still underway we
have published these 19 penguin genomes to provide early ac-
cess, while requesting researchers intending to use these data
for similar cross-species comparisons to continue to follow the
long-running Fort Lauderdale and Toronto rules.

Conclusions

Genomics is prohibitively costly—it requires high-quality sam-
ples and extensive laboratory and bioinformatic skills. The ge-
nomics era has been boosted by global research consortiums,
which bring together contextual, technical, and analytical skills
spanning a network of international collaborations [123–126].
Our consortium and dataset introduced here are no exception,
and as such, we expect our future research using these genomes
to bring together additional collaborators that encompass a wide
range of expertise regarding penguin biology and physiology. At
another level, collecting high-quality fresh blood samples from
some of the most remote regions in the Southern Ocean re-
mains technically and logistically difficult, requiring the efforts
and long-term organization from many collaborations and ex-
pedition programs. While this study is an exciting development
for understanding the evolution of penguins, the global efforts
involved in designing our study, obtaining samples, and devel-
oping appropriate sequencing and bioinformatic pipelines have
been extensive. The dataset and project design introduced here
highlight the need for transparent research projects and global
collaborations, which together maximize the use of samples,

minimizing sequencing costs, and laboratory and analytical ef-
forts.

In this study we have presented 19 new high-coverage pen-
guin genomes. Together with 2 genomes previously obtained
by members of our consortium [51], this combined dataset en-
compasses the genomes of all extant penguin species. We have
also constructed a comprehensive phylogenomic tree encom-
passing all extant penguins. We will use these datasets to ad-
dress a range of evolutionary, adaptive, biogeographic, and de-
mographic questions regarding penguins. As such, we hope not
only that our ongoing projects that encompass these genomes
will provide novel insights for understanding the broad evolu-
tion and adaptation of avifauna to different environments but
also that this knowledge will increase cultural heritage and
aid conservation management decisions for remote Southern
Ocean regions.

Availability of supporting data and materials

The genome sequencing data and assemblies of this study have
been deposited in the CNSA (https://db.cngb.org/cnsa/) of the
CNGBdb database with the accession number CNP0000605, as
well as the NCBI database with the Bioproject ID PRJNA556735
(Aptenodytes patagonicus: SAMN12384866; Eudyptes chrysolophus
chrysolophus: SAMN12384869; E. c. schlegeli: SAMN12384870; E.
chrysocome: SAMN12384872; E. filholi: SAMN12384873; E. moseleyi:
SAMN12384871; E. pachyrhynchus: SAMN12384875; Eudyptes ro-
bustus: SAMN12384876; E. sclateri: SAMN12384874; Eudyptula mi-
nor albosignata: SAMN12384880; E. m. minor: SAMN12384879; E.
novaehollandiae: SAMN12384878; Megadyptes antipodes antipodes:
SAMN12384877; Pygoscelis antarctica: SAMN12384868; P. papua:
SAMN12384867; Spheniscus demersus: SAMN12384881; S. hum-
boldti: SAMN12384883; S. magellanicus: SAMN12384882; S. men-
diculus: SAMN12384884. Data from all of the penguin species are
also available from the GigaScience GigaDB database [127].
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Supplementary Figure 1: Phylogenomic trees.
Supplementary Table 1: Sampling and permitting details of all
penguin samples tested.
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Supplementary Table 3: Information of 71 avian transcriptomic
samples downloaded from NCBI.
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